Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
4.
J Chem Theory Comput ; 19(15): 4863-4882, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37450482

RESUMEN

Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a graphics processing unit (GPU)-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches─alchemical replica exchange and alchemical replica exchange with solute tempering─for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and is available at https://github.com/choderalab/perses.


Asunto(s)
Aminoácidos , Simulación de Dinámica Molecular , Termodinámica , Entropía , Unión Proteica
5.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
6.
bioRxiv ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945557

RESUMEN

Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a GPU-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches-alchemical replica exchange and alchemical replica exchange with solute tempering-for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally-determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and available at https://github.com/choderalab/perses .

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770402

RESUMEN

A detailed study of the dielectric behavior of printed capacitors is given, in which the dielectric consists of a thin (<1 µm) ceramic/polymer composite layer with high permittivities of εr 20-69. The used ink contains surface-modified Ba0.6Sr0.4TiO3 (BST), a polymeric crosslinking agent and a thermal initiator, which allows the immediate polymerization of the ink during printing, leading to homogenous layers. To validate the results of the calculated permittivities, different layer thicknesses of the dielectric are printed and the capacitances, as well as the loss factors, are measured. Afterwards, the exact layer thicknesses are determined with cross sectional SEM images of ion-etched samples. Then, the permittivities are calculated with the known effective area of the capacitors. Furthermore, the ink composition is varied to obtain different ceramic/polymer ratios and thus different permittivities. The packing density of all composites is analyzed via SEM to show possible pores and validate the target ratio, respectively. The correlation between the chosen ratio and the measured permittivity is discussed using models from the literature. In addition, the leakage current of some capacitors is measured and discussed. For that, the dielectric was printed on different bottom electrodes as the nature of the electrode was found to be crucial for the performance.

8.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676447

RESUMEN

A finite element method (FEM)-based simulation approach to predict the tunability in composite materials was developed and tested with analytical data. These tests showed good prediction capabilities of the simulation for the test data. The simulation model was then used to predict the tunability of a network-structured composite, where the dielectric phase formed clusters in a paraelectric network. This was achieved by simulating a reciprocal core-shell unit cell of said network. The simulation showed a high tunability for this network model, exceeding the tunability of the analytically evaluated layered, columnar, and particulate model. The simulation results were experimentally verified with a Ba0.6Sr0.4TiO3/Mg3B2O6 (BST/MBO) composite, where core-shell granulates were made with a two-step granulation process. These structured samples showed higher tunability and dielectric loss than the unstructured samples made for comparison. Overall, the structured samples showed higher tunability to loss ratios, indicating their potential for use in tunable radio frequency applications, since they may combine high performance with little energy loss.

9.
Science ; 378(6620): 619-627, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36264829

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Memoria Inmunológica , Células B de Memoria/inmunología
10.
MethodsX ; 9: 101784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898613

RESUMEN

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions.

11.
bioRxiv ; 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35677069

RESUMEN

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.

12.
Science ; 377(6604): 420-424, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35762884

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved variants with substitutions in the spike receptor-binding domain (RBD) that affect its affinity for angiotensin-converting enzyme 2 (ACE2) receptor and recognition by antibodies. These substitutions could also shape future evolution by modulating the effects of mutations at other sites-a phenomenon called epistasis. To investigate this possibility, we performed deep mutational scans to measure the effects on ACE2 binding of all single-amino acid mutations in the Wuhan-Hu-1, Alpha, Beta, Delta, and Eta variant RBDs. Some substitutions, most prominently Asn501→Tyr (N501Y), cause epistatic shifts in the effects of mutations at other sites. These epistatic shifts shape subsequent evolutionary change-for example, enabling many of the antibody-escape substitutions in the Omicron RBD. These epistatic shifts occur despite high conservation of the overall RBD structure. Our data shed light on RBD sequence-function relationships and facilitate interpretation of ongoing SARS-CoV-2 evolution.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Epistasis Genética , Evolución Molecular , Receptores Virales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Humanos , Mutación , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
Science ; 375(6583): 864-868, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076256

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity. Remodeling of interactions between the Omicron receptor-binding domain and human ACE2 likely explains the enhanced affinity for the host receptor relative to the ancestral virus.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/química , Evasión Inmune , Receptores de Coronavirus/química , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Deriva y Cambio Antigénico , Anticuerpos ampliamente neutralizantes/química , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
14.
J Mol Biol ; 431(7): 1481-1493, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30776430

RESUMEN

Building on the substantial progress that has been made in using free energy perturbation (FEP) methods to predict the relative binding affinities of small molecule ligands to proteins, we have previously shown that results of similar quality can be obtained in predicting the effect of mutations on the binding affinity of protein-protein complexes. However, these results were restricted to mutations which did not change the net charge of the side chains due to known difficulties with modeling perturbations involving a change in charge in FEP. Various methods have been proposed to address this problem. Here we apply the co-alchemical water approach to study the efficacy of FEP calculations of charge changing mutations at the protein-protein interface for the antibody-gp120 system investigated previously and three additional complexes. We achieve an overall root mean square error of 1.2 kcal/mol on a set of 106 cases involving a change in net charge selected by a simple suitability filter using side-chain predictions and solvent accessible surface area to be relevant to a biologic optimization project. Reasonable, although less precise, results are also obtained for the 44 more challenging mutations that involve buried residues, which may in some cases require substantial reorganization of the local protein structure, which can extend beyond the scope of a typical FEP simulation. We believe that the proposed prediction protocol will be of sufficient efficiency and accuracy to guide protein engineering projects for which optimization and/or maintenance of a high degree of binding affinity is a key objective.


Asunto(s)
Anticuerpos Neutralizantes/química , Entropía , Anticuerpos Anti-VIH/química , Proteína gp120 de Envoltorio del VIH/química , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Fenómenos Biofísicos , Biología Computacional , Bases de Datos Factuales , Descubrimiento de Drogas , Proteína gp120 de Envoltorio del VIH/inmunología , Enlace de Hidrógeno , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética
15.
Proc Natl Acad Sci U S A ; 115(45): E10797-E10806, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30341217

RESUMEN

Most organisms must cope with temperature changes. This involves genes and gene networks both as subjects and agents of cellular protection, creating difficulties in understanding. Here, we study how heating and cooling affect expression of single genes and synthetic gene circuits in Saccharomyces cerevisiae We discovered that nonoptimal temperatures induce a cell fate choice between stress resistance and growth arrest. This creates dramatic gene expression bimodality in isogenic cell populations, as arrest abolishes gene expression. Multiscale models incorporating population dynamics, temperature-dependent growth rates, and Arrhenius scaling of reaction rates captured the effects of cooling, but not those of heating in resistant cells. Molecular-dynamics simulations revealed how heating alters the conformational dynamics of the TetR repressor, fully explaining the experimental observations. Overall, nonoptimal temperatures induce a cell fate decision and corrupt gene and gene network function in computationally predictable ways, which may aid future applications of engineered microbes in nonstandard temperatures.


Asunto(s)
Adaptación Fisiológica/genética , Puntos de Control del Ciclo Celular/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Frío , Proteínas Fúngicas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Calor , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Termodinámica
16.
Commun Biol ; 1: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30159405

RESUMEN

The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. This complicates the practice of precision medicine, pairing of patients with clinical trials, and development of next-generation inhibitors. Here, we examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). We find these calculations can achieve useful accuracy in predicting resistance for a set of eight FDA-approved kinase inhibitors across 144 clinically-identified point mutations, achieving a root mean square error in binding free energy changes of 1.10.91.3 kcal/mol (95% confidence interval) and correctly classifying mutations as resistant or susceptible with 888293% accuracy. Since these calculations are fast on modern GPUs, this benchmark establishes the potential for physical modeling to collaboratively support the rapid assessment and anticipation of the potential for patient mutations to affect drug potency in clinical applications.

17.
J Chem Inf Model ; 57(4): 864-874, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28287728

RESUMEN

A general method is presented to characterize the helical properties of potentially irregular helices, such as those found in protein secondary and tertiary structures and nucleic acids. The method was validated using artificial helices with varying numbers of points, points per helical turn, pitch, and radius. The sensitivity of the method was validated by applying increasing amounts of random perturbation to the coordinates of these helices; 399 360 helices in total were evaluated. In addition, the helical parameters of protein secondary structure elements and nucleic acid helices were analyzed. Generally, at least seven points were required to recapitulate the parameters of a helix using our method. The method can also be used to calculate the helical parameters of nucleic acid-binding proteins, like TALE, enabling direct analysis of their helix complementarity to sequence-dependent DNA distortions.


Asunto(s)
Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica en Hélice alfa , ADN/química , Proteínas/química , ARN/química , Rotación
18.
Nucleic Acids Res ; 44(1): 63-74, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26673724

RESUMEN

Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.


Asunto(s)
Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/química , ADN/metabolismo , ADN Forma B , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica
19.
J Mol Biol ; 428(12): 2542-2556, 2016 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26523681

RESUMEN

Human mitochondrial transcription termination occurs within the leu-tRNA gene and is mediated by the DNA binding protein MTERF1. The crystal structure of MTERF1 bound to the canonical termination sequence reveals a rare base flipping event that involves the eversion of three nucleotides. These nucleotides are stabilized by stacking interactions with three MTERF1 residues, which are essential not only for base flipping but also for termination activity. To further understand the mechanism of base flipping, we examined each of the individual stacking interactions in structural, energetic and functional detail. Individual substitutions of Arg162, Tyr288 and Phe243 have revealed unequal contributions to overall termination activity. Furthermore, our work identifies an important role for Phe322 in the base flipping mechanism and we demonstrate how Phe322 and Phe243 are important for coupling base flipping between the heavy and light strand DNA chains. We propose a stepwise model for the base flipping process that recapitulates our observations. Finally, we show that MTERF1 has the ability to accommodate alternate active conformations. The adaptability of base flipping has implications for MTERF1 function and for the putative function of MTERF1 at alternative binding sites in human mitochondria.


Asunto(s)
Emparejamiento Base/genética , ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética/fisiología , Sitios de Unión/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación de Ácido Nucleico
20.
J Chem Theory Comput ; 11(8): 3696-713, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26574453

RESUMEN

Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple small adjustments of φ and ψ parameters were tested against NMR scalar coupling data and secondary structure content for short peptides. The best results were obtained from a physically motivated adjustment to the φ rotational profile that compensates for lack of ff99SB QM training data in the ß-ppII transition region. Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution. We also discuss the Amber ff12SB parameter set, a preliminary version of ff14SB that includes most of its improvements.


Asunto(s)
Proteínas/química , Aminoácidos/química , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Estructura Secundaria de Proteína , Proteínas/metabolismo , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...